Indian Statistical Institute, Bangalore Centre B.Math.(Hons.) I year, First Semester

Semesteral Examination (Back Paper) Analysis I Instructor: Pl Muthuramalingam

Date: January 13, 2010

Maxmimum marks you can get is 40.

- 1. Give an example of a bounded sequence which is not a cauchy sequence and prove your claim. [1]
- 2. Let $g: (0,1] \longrightarrow R$ be the continuous function given by $g(x) = \sin(\frac{1}{x})$. Let $f: [0,1] \longrightarrow R$ be any function such that f(x) = g(x) for all x in (0,1]. Show that f can not be continuous. [2]
- 3. Let $f: [0,1] \longrightarrow R$ be given by f(x) = x if x is rational and 1 x if x is irrational. Show that f is continuous at $\frac{1}{2}$. [2]
- 4. Give an example of a continuous function $f: (0, 1] \longrightarrow R$ which is not bounded above. [1]
- 5. Let $I_1 \supset I_2 \supset \cdots$ be a sequence of closed intervals with length $I_r \longrightarrow 0$ as $r \longrightarrow \infty$. If $x_j, \epsilon I_j$ then show that the sequence $\{x_1, x_2, x_3, \cdots\}$ is a cauchy sequence. [2]
- 6. (a) Let $a_n > 0, \sum a_n^2 < \infty, \ \partial > \frac{1}{2}$. Then show that $\sum_{1}^{\infty} \frac{a_n}{n^{\partial}}$ exists. [2]

(b) Let
$$\mathbb{B} > \frac{1}{2}$$
. Show that $\sum b_n < \infty$ where $b_n = \frac{\sqrt{n+1}-\sqrt{n}}{n^{\mathbb{B}}}$. [2]

7. (a) Show that $f : R \longrightarrow R$ given by $f(x) = x^2$ is not uniformly continuous. [2]

(b) Give an example of uniformly continuous functions g_1, g_2 such that the product $g_1 g_2$ is not uniformly continuous and prove your claim.[1] (c) Let $g: J \longrightarrow R$ be uniformly continuous. Show that if x_1, x_2, \cdots is a cauchy sequence in J, then $g(x_1), \cdots$ is a cauchy sequence. [2] (d) Let $k: J \longrightarrow R$ be a continuous, differentiable function and the derivative be bounded and continuous. Show that k is uniformly continuous. Here J is a bounded or unbounded interval. [2]

- 8. If a_1, a_2, \cdots is a sequence of reals with $\sum |a_n| < \infty$, then $\sum a_n$ exists.
- 9. Let a_1, a_2, a_3, \cdots be a sequence of reals. $s_n = a_1 + a_2 + a_3 + \dots + a_n$. Assume that the sequence s_{3n} is convergent. Then $\sum a_n$ exists $\Leftrightarrow a_r \longrightarrow 0$ as $r \longrightarrow \infty$. [2]
- 10. Let $f: [0,1] \longrightarrow [0,\infty)$ be any function assume that there exists $M \ge 0$ such that for all subsets $\{x_1, x_2, \cdots, x_k\}$ of [0,1], one has $f(x_1) + f(x_2) + \cdots + f(x_k) \le M$. Show that $G = \{x : f(x) \ne 0\}$ is a countable set. [2]
- 11. Let $g : [0,1] \longrightarrow R$ be any continuus function with g(0) < 0 < g(1). Show that g assumes the value 0. [3]
- 12. Let $f : [a, b] \longrightarrow R$ be continuous, differentiable and f' be continuous. Show that $\lim_{\delta \longrightarrow 0} \sup_{a \leq x \leq b |0| < |t-x| \leq \delta} \sup_{x \leq b |0| < |t-x| \leq \delta} \frac{f(t) - f(x)}{t-x} - f'(x) = 0$ [2]
- 13. Let a and b be real numbers. If the series $(a+b)+(a+2b)+(a+3b)+\cdots$ is convergent, then show that b=0 and a=0. [2]
- 14. Let A, B be bounded subsets of $[0, \infty)$. Let $C = \{ab : a \in A, b \in B\}$. Let $x = \sup A, y = \sup B, z = \sup C$. Note that x need not be in A and y need not be in B. Show that z = xy. [2]
- 15. (a) Let a_1, a_2, \cdots be a sequence with $a_j \ge 0$. Let $\sum_{1}^{\infty} a_j$ be convergent let $n_1 < n_2 < n_3 < \cdots$ be increasing sequence of natural numbers let $b_j = a_{n_j} \cdots$. Show that $\sum b_j$ is convergent. [2] (b) Give an example of a real sequence x_1, x_2, \cdots and a subsequence $x_{n_2}, x_{n_2} \cdots$ such that $\sum x_j$ is convergent and $\sum x_{n_j}$ is not convergent prove your claim.
- 16. Define $f: [0,1] \longrightarrow R$ by $f(x) = x^a \sin(\frac{1}{x^c})$, where c > o and $a \ge 0$ for x > 0, f(0) = 0. (i) If f is continuous at 0, show that a > 0. [2]
- 17. Let a_1, a_2, \cdots be a sequence of reals with $\sum a_j$ convergent. Let $n_1 < n_2 < n_3 < \cdots$.

Put
$$b_1 = a_1 + a_2 + \dots + a_{n_1}$$
,
 $b_2 = a_{n_1+1} + a_{n_1+2} + \dots + a_{n_2}$.
 $b_3 = a_{n_2+1} + a_{n_2+2} + \dots + a_{n_3}$, etc.

Show that the series $b_1 + b_2 + \cdots$ is convergent and converges to $\sum a_r$.

[2]

18. Show that any disjoint collection of bounded intervals each of positive length is finite or countable.